Anzeige
Mehr »
Dienstag, 02.09.2025 - Börsentäglich über 12.000 News
Milliardenmarkt Multiple Sklerose: Neue Therapieform könnte alles verändern!
Anzeige

Indizes

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Aktien

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Xetra-Orderbuch

Fonds

Kurs

%

Devisen

Kurs

%

Rohstoffe

Kurs

%

Themen

Kurs

%

Erweiterte Suche
PR Newswire
268 Leser
Artikel bewerten:
(1)

Ontotext GraphDB Passes the Linked Data Benchmarking Council's Social Network and the Semantic Publishing Benchmarks

Benchmarks determine the Ontotext GraphDB is the only RDF engine proven to deal efficiently with both graph analytics and metadata management workloads

NEW YORK, April 12, 2023 /PRNewswire/ -- Ontotext, the leading global provider of enterprise knowledge graph (EKG) technology and semantic database engines, today announced that Ontotext GraphDB?? is the first engine to pass both Linked Data Benchmarking Council's (LDBC) Social Network Benchmark (SNB) and Semantic Publishing Benchmarks (SPB), proving its unique capability to handle graph analytics and metadata management workloads simultaneously. The results from the LDBC - a non-profit organization defining standard graph benchmarks to foster a community around graph processing technologies - found Ontotext GraphDB to be the most versatile Graph Database Engine allowing data from different sources to be interlinked, contextualized, and normalized in a graph that allows for consistent and unambiguous interpretation.

ontotext logo

As a proven Resource Description Framework (RDF) engine for knowledge graph, Ontotext GraphDB enables organizations to link diverse data, index it for semantic search, and enrich it via text analysis to build large scale knowledge graphs. This recognition is significant, as the benchmark indicates a clear separation between Labeled Property Graph (LPG) engines and RDF engines. Historically, LPG engines were optimized to deal with graph analytics and RDF engines were designed for data publishing and metadata management. In the benchmark, RDF engines were audited only on SPB, while LPG and other graph analytics-optimized designs were audited only on SNB. The benchmark simulated analytical queries against social networks data such as messages, comments, people related to other people, cities, universities, companies, etc. and affirmed that Ontotext GraphDB passed SNB's Interactive Workload at scale factor 30 (SF30) across a graph of 1.5 billion edges.

Enterprise knowledge graphs require graph databases that facilitate advanced data integration and metadata data management scenarios where an EKG can be used for data fabrics or serve as a data hub between diverse data and content management systems. The same engines are expected to efficiently deal with computationally challenging data analytics, discovering multi-hop relationships across networks of concepts, entities, assets, documents, and other resources.

"Our mission is to offer our users an enterprise-ready database delivering stable performance across different graph use cases. Passing external benchmark audits with a generally available version reflects our transparent engineering culture of being an advisor to our clients," said Vassil Momtchev, CTO, at Ontotext. "In both benchmarks, the engine scales with the complex read and write operations load while preserving its ACID compliance and graph consistency."

About Ontotext

As the leading global provider of enterprise knowledge graph technology and semantic database engines, Ontotext helps enterprises to identify meaning and connections across diverse datasets and massive amounts of unstructured information. Ontotext's technology and services deliver value through semantic knowledge graphs, linking multiple structured and unstructured datasets to help customers achieve enhanced decision making, support knowledge growth and acquisition, deliver insights discovery, and ensure AI is properly educated. The company's knowledge graph technology helps businesses to connect data and define relationships to get the most out of business-critical data. The Ontotext GraphDB?? engine and Ontotext Platform are credited for powering business-critical systems in some of the largest financial services and life sciences organizations, media, market intelligence agencies, car and aerospace manufacturers. To learn more visit or follow them on LinkedIn orTwitter.

Logo: https://mma.prnewswire.com/media/448827/Ontotext_Logo.jpg

Cision View original content:https://www.prnewswire.co.uk/news-releases/ontotext-graphdb-passes-the-linked-data-benchmarking-councils-social-network-and-the-semantic-publishing-benchmarks-301794817.html

© 2023 PR Newswire
Solarbranche vor dem Mega-Comeback?
Lange galten Solaraktien als Liebling der Börse, dann kam der herbe Absturz: Zinsschock, Überkapazitäten aus China und ein Preisverfall, der selbst Marktführer wie SMA Solar, Enphase Energy oder SolarEdge massiv unter Druck setzte. Viele Anleger haben der Branche längst den Rücken gekehrt.

Doch genau das könnte jetzt die Chance sein!
Die Kombination aus KI-Explosion und Energiewende bringt die Branche zurück ins Rampenlicht:
  • Rechenzentren verschlingen Megawatt – Solarstrom bietet den günstigsten Preis je Kilowattstunde
  • Moderne Module liefern Wirkungsgrade wie Atomkraftwerke
  • hina bremst Preisdumping & pusht massiv den Ausbau
Gleichzeitig locken viele Solar-Aktien mit historischen Tiefstständen und massiven Short-Quoten, ein perfekter Nährboden für Kursrebound und Squeeze-Rally.

In unserem exklusiven Gratis-Report zeigen wir dir, welche 4 Solar-Aktien besonders vom Comeback profitieren dürften und warum jetzt der perfekte Zeitpunkt für einen Einstieg sein könnte.

Laden Sie jetzt den Spezialreport kostenlos herunter, bevor die Erholung am Markt beginnt!

Dieses Angebot gilt nur für kurze Zeit – also nicht zögern, jetzt sichern!
Werbehinweise: Die Billigung des Basisprospekts durch die BaFin ist nicht als ihre Befürwortung der angebotenen Wertpapiere zu verstehen. Wir empfehlen Interessenten und potenziellen Anlegern den Basisprospekt und die Endgültigen Bedingungen zu lesen, bevor sie eine Anlageentscheidung treffen, um sich möglichst umfassend zu informieren, insbesondere über die potenziellen Risiken und Chancen des Wertpapiers. Sie sind im Begriff, ein Produkt zu erwerben, das nicht einfach ist und schwer zu verstehen sein kann.