Anzeige
Mehr »
Mittwoch, 27.08.2025 - Börsentäglich über 12.000 News
Breaking: AlsetAI zündet nächste Stufe - Neue Allianz mit CHIP Datacentres & Hochkarätige Vorstände markieren Wendepunkt
Anzeige

Indizes

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Aktien

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Xetra-Orderbuch

Fonds

Kurs

%

Devisen

Kurs

%

Rohstoffe

Kurs

%

Themen

Kurs

%

Erweiterte Suche
GlobeNewswire (Europe)
208 Leser
Artikel bewerten:
(1)

The Wistar Institute: Wistar Scientists Identify Esophageal Cancer Biomarkers

Dr. Noam Auslander and authors trained a neural network to identify cancer risk from microbes

Philadelphia, PA, Dec. 06, 2023- assistant professor in the Ellen and Ronald Caplan Cancer Center's Molecular & Cellular Oncogenesis Program - the group has analyzed short read RNA-sequencing data to detect biomarkers for esophageal carcinoma, or ESCA. Their paper, "Microbial gene expression analysis of healthy and cancerous esophagus uncovers bacterial biomarkers of clinical outcomes,"was published in International Society for Microbial Ecology Communications.

Tumor microenvironments are often analyzed using RNA sequencing, or RNAseq, which identifies mRNA in a population of cells to find which genes are being expressed. Theoretically, RNAseq data can reveal the expression of microbial genes in cancerous tissue, which could help to identify microbiome shifts that might be playing a role in the cancer's development. But RNAseq "reads" - the physical lengths of genetic data that correspond with gene expression - are often quite short, posing a challenge for classifying them into diverse microbial genetic origins. Assembling the short RNAseq reads into longer contiguous segments that can be associated with a vast array of potential origins - be they human, viral, or bacterial - to identify specific microbes whose expression correlates with ESCA is computationally challenging.

That's where Dr. Auslander and her group decided to intervene by training a convolutional neural network, a type of machine-learning technology that can be taught to train itself to accurately assess large quantities of data. The team, using large publicly available datasets of characterized short-read data, trained the network to sort short-read RNAseq data by its likely origin: human, viral, or bacterial. Their model sought to pare down the number of short reads that would need to be assembled for identification, which would reduce the computational load of screening for microbial influences in cancer tissue.

Once the model was trained, its sorting capabilities allowed the group to selectively analyze ESCA tissue for reads of microbial origin and compare those data with apparently healthy esophageal tissue. Auslander's team found several instances of microbial expression present in ESCA with significantly less incidence in apparently healthy esophageal tissue.

In particular, they found that nearly half of the microbial genes over-expressed in cancer originated from bacteriophages, which are viruses that infect bacteria; this finding may indicate that viruses infecting microorganisms within the tumor microenvironment facilitate ongoing cancerous gene expression.

The team also identified patient outcome predictors amid the data. Bacterial iron-sulfur proteins were found to impact human genes involved in ferroptosis - a type of cell death pathway that's modulated by iron - which predicted poor prognosis in ESCA patients. Microbial genes involved in mitochondrial reprogramming were also found to predict ESCA patient prognosis.

"By building on our previous work, our team has successfully leveraged machine learning to dive deeper into what's going on inside cancer," said Dr. Auslander. "While it's always important to remember that correlation does not equal causation, the associations we've been able to find between certain microbial genes and ESCA will allow scientists to further understand the mechanics of esophageal cancer - which is the first step in stopping it."

Co-authors: Daniel E. Schäffer of Carnegie Mellon University, The Wistar Institute, and the Massachusetts Institute of Technology; Wenrui Li of The University of Pennsylvania; Abdurrahman Elbasir and Dario C. Altieri of The Wistar Institute; Qi Long of The University of Pennsylvania; and Noam Auslander of The Wistar Institute.

Work supported by: National Cancer Institute grant numbers R00CA252025 and P30-CA016520 and National Institute on Aging grant number RF1-AG063481.

Publication information: "Microbial gene expression analysis of healthy and cancerous esophagus uncovers bacterial biomarkers of clinical outcomes," published in International Society for Microbial Ecology Communications

###

The Wistar Institute is the nation's first independent nonprofit institution devoted exclusively to foundational biomedical research and training. Since 1972, the Institute has held National Cancer Institute (NCI)-designated Cancer Center status. Through a culture and commitment to biomedical collaboration and innovation, Wistar science leads to breakthrough early-stage discoveries and life science sector start-ups. Wistar scientists are dedicated to solving some of the world's most challenging problems in the field of cancer and immunology, advancing human health through early-stage discovery and training the next generation of biomedical researchers. wistar.org


© 2023 GlobeNewswire (Europe)
Zeitenwende! 3 Uranaktien vor der Neubewertung
Ende Mai leitete US-Präsident Donald Trump mit der Unterzeichnung mehrerer Dekrete eine weitreichende Wende in der amerikanischen Energiepolitik ein. Im Fokus: der beschleunigte Ausbau der Kernenergie.

Mit einem umfassenden Maßnahmenpaket sollen Genehmigungsprozesse reformiert, kleinere Reaktoren gefördert und der Anteil von Atomstrom in den USA massiv gesteigert werden. Auslöser ist der explodierende Energiebedarf durch KI-Rechenzentren, der eine stabile, CO₂-arme Grundlastversorgung zwingend notwendig macht.

In unserem kostenlosen Spezialreport erfahren Sie, welche 3 Unternehmen jetzt im Zentrum dieser energiepolitischen Neuausrichtung stehen, und wer vom kommenden Boom der Nuklearindustrie besonders profitieren könnte.

Holen Sie sich den neuesten Report! Verpassen Sie nicht, welche Aktien besonders von der Energiewende in den USA profitieren dürften, und laden Sie sich das Gratis-PDF jetzt kostenlos herunter.

Dieses exklusive Angebot gilt aber nur für kurze Zeit! Daher jetzt downloaden!
Werbehinweise: Die Billigung des Basisprospekts durch die BaFin ist nicht als ihre Befürwortung der angebotenen Wertpapiere zu verstehen. Wir empfehlen Interessenten und potenziellen Anlegern den Basisprospekt und die Endgültigen Bedingungen zu lesen, bevor sie eine Anlageentscheidung treffen, um sich möglichst umfassend zu informieren, insbesondere über die potenziellen Risiken und Chancen des Wertpapiers. Sie sind im Begriff, ein Produkt zu erwerben, das nicht einfach ist und schwer zu verstehen sein kann.